Minimum Spanning Trees

A Network Design Problem

Given: undirected graph G = (V, E) with edge costs $c_e > 0$

Find: edge subset $T \subseteq E$ such that (V, T) is connected and total cost $\Sigma_{e \in T} c_e$ is as small as possible

Fundamental problem with many applications!

Example on board: total cost of different subgraphs

Minimum Spanning Tree Problem

Lemma. Let T be a minimum-cost solution of the network design problem. Then (V, T) is a tree.

Proof on board

Definition. $T \subseteq E$ is a spanning tree if (V, T) is a tree

Network design problem is the Minimum Spanning Tree (MST) Problem

Greedy MST Template (Kruskal and Prim)

"Grow" a tree greedily

T = {}
While |T| < n-1 { // (V, T) is not connected
 Pick "best" edge e that does not create a
 cycle when added to T
 T = T ∪ {e}
}</pre>

Kruskal's Algorithm

Grow many small trees

```
Sort edges by weight: c1 ≤ c2 ≤ ... ≤ cm
T = {}
for e = 1 to m {
    if adding e to T does not cause a cycle {
        T = T ∪ {e}
    }
}
```

Example on board

Prim's Algorithm

Grow a tree outward from starting node s

 $T = \{\}$ S = {s} // connected nodes While |T| < n-1 { Let e = (u, v) be the minimum cost edge from S to V-S T = T ∪ {e} $S = S \cup \{v\}$ } Example on board

Analysis: Cut Property

Simplifying assumption. All edge weights are distinct.

Theorem (Cut Property). Assume edge weights are distinct, and let (S, V-S) be a partition of V into two nonempty sets. Let e = (v, w) be the minimum cost with $v \in S$ and $w \notin S$. Then every minimum spanning tree contains e.

Illustration and proof on board

Correctness of Prim's Algorithm

Theorem: the tree T returned by Prim's algorithm is a minimum spanning tree.

Proof? (Hint: maintain invariant that T is a subset of some MST, use the cut property)

Correctness of Kruskal's Algorithm

Theorem: the tree T returned by Kruskal's algorithm is a minimum spanning tree.

Proof? What cut can you use to prove that Kruskal's algorithm is correct?

Removing Distinctness Assumption

Idea: Break ties in weights by adding tiny amount to each edge weight so they become distinct.

If perturbations are small enough then: cost(T) > cost(T') before $\Rightarrow cost(T) > cost(T')$ after

Implementation: break ties arbitrarily (e.g., lexicographically)

Network Design: Steiner Tree Problem

Given: undirected graph G = (V, E) with edge costs $c_e > 0$ and terminals $X \subseteq V$

Find: edge subset $T \subseteq E$ such that (V, T) has a path between each pair of terminals and the total cost $\Sigma_{e \in T} c_e$ is as small as possible

Easier? Harder?

Spatial Conservation Planning

- Which land should I buy to maximize the spread of an endangered species?
- Optimization problem over a graph: decide which nodes to add to the graph, given a fixed budget

Conservation Strategies

Formulate and solve network design problem as an integer program